今天研究所的課,最大的收穫是認識另一個抓youtube的好工具
YouTubeDownloaderHD,簡單好用沒廣告,謝謝老師!
2012年3月8日 星期四
2012年1月3日 星期二
數學課程理論研究心得作業-8
◎授課教授:謝淡宜 教授
◎上課日期:101年1月3日星期二
◎上課重點摘要:
好好研讀這本「數學學習心理學」吧!
◎心得寫作:
自從開始研讀教授推崇的這本「數學學習心理學」之後,感覺自己在課堂上教學技巧的突然功力大增,雖然書名為數學學習,但是應用在其他學科的教學,也常常無往不利。翻開整本書,只要研讀過的章節內容,幾乎畫滿紅線與註記,天啊!簡直是「字字珠璣」,每隔幾句話就是重點,叫人不做記號也難。
在最後這堂課裡,老師傳授大家將來寫論文時的秘訣。提醒我們書中關於「教學實驗」的章節對我們非常有參考價值,其內容詳述建構學派所提的信念及實際教學實驗例子,我們甚至可以在論文中引述在文獻探討裡。
如果床頭一定要擺一本書才能安然睡著的話,我想,這本陳澤民先生翻譯的「數學學習心理學」可能就是我的首選。想要在數學課程教學上有所精進的話,仔細研讀這本書準沒錯。因為數學教育界裡的大師Skemp先生的重要論述都在裏頭找得到。雖然寫成的年代已有二、三十年,但正如老師曾舉例說明過的(學資訊的抱怨學數學的),數千年前的數學定理,現代的數學家都還在探究學習。我想,何況只有幾十年的這本書,應當更值得我們學數學教育的人去認真研讀吧!
今天這堂課是結束這門「數學課程理論研究」課程的時候,但我相信也是我學習「數學課程理論」的開始。
2011年12月27日 星期二
數學課程理論研究心得作業-7
◎授課教授:謝淡宜
◎上課日期:100年12月27日星期二
◎上課重點摘要:
1. 「慣性學習與「智慧學習」
2. 「甲類處理器」與「乙類處理器」兩個指導系統
◎心得寫作:
今天開始學習這本老師非常推崇的書--「數學學習心理學」,Richard R. Skemp 所著作。從學期一開始,謝老師不斷地提醒大家,這本書一定要看,說對我們在數學教學實務上非常有幫助。
說來好氣又好笑,平常在學校忙著教學及備課,根本沒時間看書,因為今天晚上好不容易終於要和老師一起研讀這本書,想起謝老師的囑咐,於是特別利用空堂時間從書包中拿出這本書,認真看了幾頁,後來讓學生打斷之後把書擱在桌上忘記放回書包。等到晚上真正要上課用書時,反而淪落到沒書可看的窘境。於是緊急到圖書館借書來上課,總算稍解燃眉之急。
老師真的很有心,想讓我們多學一些,不因為學期快結束而草率結束課程。謝老師從重點切入,帶著我們從B部分直接研讀,就跟學校課程設計一樣,因為是螺旋式的學習,讀後面常常也會提到前面須具備的知識,所以不擔心看不懂後面的論述。在學校面對學生教學也是如此,教新單元時學生其實都有舊經驗在支撐著,適時有效地喚起舊經驗,讓新的學習經驗能快速成為學習者的舊經驗,這才是我們做老師的一大挑戰。
我喜歡因為主學習而帶來副學習的學習效果,例如老師在講述這本書的同時,提到了Skemp個人的生平,原本從數學領域跳到研究心理學,後來又發現那不是他真正要的,最後轉向數學學習教育方面的研究。這番話讓我對Skemp另眼相看,他可以經過自我探求最後找到自己的「真愛」,繞了一圈又回到初衷。對他的認識加深之後,相信往後看到他的文章一定印象更深刻。
除了Skemp之外,我在這堂課最有收穫的就是關於甚麼是「慣性學習」與「智慧學習」。他以Skinner的實驗為例,老鼠壓桿取得食物的行為,事實上認知的成分很少,純粹習慣使然。習慣一旦養成就很難改掉,一般人既有的習慣是頑固的,很難去改變它。老師問我們為什麼平日在學校進行的補救教學的成效不好?就是因為那些學生學不好的原因在於他們對數學的迷失概念已經養成,要在事後改正他的觀念以增進學習效果是很難的。除非是那些似懂非懂尚未養成迷失概念的學生,對他們進行補救教學才有效果。老師舉的這個例子,為慣性學習做了最佳闡釋,對經常執著於為低成就孩子加強數學補救的我,不啻是一記當頭棒喝,原來不好好學數學學習心理學,我將會在教學上做許多「虛功」啊!
相較慣性學習而言,「智慧學習」顯得有意義且有趣多了。它以目標為導向,不是以外在刺激先決。如同老師前往佳里國中演講授課的交通過程,雖然已有事先準備地圖,但真正派上用場的是老師自行找到自己的目標物(7-11超商)才不致迷路。此超商對老師是一種刺激物(找到回家的路),但由於「智慧學習」的結果,讓其他沿途的7-11超商又變成不是刺激物了。謝老師真厲害,一個生活中簡單例子勝過千言萬語。
目標導向的教學非常重要,我得善用「智慧學習」在數學教學上,想辦法讓學生在適應完成我設定的目標過程中,經過他自己的調適學習而產生智慧,並且能夠依自己的適應力去調整同化成為他的學習能力。
至於後面講到的「甲類處理器」及「乙類處理器」兩個關於學習的指導系統,簡而言之乙類處理器是在「處理」甲類處理器的。若以老師舉的例子,事先準備的地圖是「甲類處理器」,而「乙類處理器」就是後來把超商當路標找到回家的路的「指導系統」。我想以這樣來解讀這兩者應該是很合適的。
2011年12月13日 星期二
數學課程理論研究心得作業-6
◎授課教授:謝淡宜 教授
◎上課日期:100年12月13日星期二
◎上課重點摘要:
1.數學概念的形成與學習
2.關係性的理解與結構性的理解
◎心得寫作:
在某次數學科輔導團來學校辦理研習時,席間和學校老師論及學生數學概念如何形成的話題時,幾乎在場所有老師都認定數學概念的養成和學生個人的學科興趣有極大關係。這個話題在我看來是頗令人玩味,因為無趣的數學教學必定引不起學生興趣,既然無興趣當然談不上進一步概念養成。但如果反過來說把數學教學變有趣,是不是可以引起學生認真學習而養成正確的數學概念呢?如此看來,學生個人的學科興趣便與數學概念的形成沒有很密切的關聯吧!
談到數學概念的形成的理論,大部分現職老師(包括我)必定感到傷神不已。雖然在早期師資養成教育時都曾認真學習,學科考試時也都能應付自如,但是經過多年職場上繁忙的教學實務之後,此刻要回答出相關的原理原則,必定感到力不從心。
儘管終日教學與學生為伍,理當時刻皆抱持教學理論從事教學。其實不然,因為在小學包班制的制度中,教師平日除了教學以外,必須花費更多時間精力在處理學生品德秩序及班級經營上。難怪最棘手的數學教學莫不以教學進度為準則,而想在有限的時間裡要求每個學生都能順利完成各個數學概念的學習。說真的,大概都遵循教科書上單元內容照表操課,而無暇反思各種教學理論與技巧,久而久之自然遺忘這些曾經學過的原理及觀念。
為了說明數學概念形成與學習,謝主任提到了知識形成的過程與理解,於是什麼是「關係性的理解」(老師認為譯成「因果式理解」較恰當)與「結構性的理解」便出現在我的筆記上頭了。幾條簡明的加減式子,加上老師精準地闡明,一下子我全瞭解了。當然,我容易瞭解是因為在課堂上曾遇過這樣的學生,他會依以前生日切蛋糕的經驗,自己推演未曾學過的分數概念。某次上課當我告訴他們一個蛋糕可以分成四份或是五份時,他說老師只能分享他五分之一的蛋糕,是因為他家裡共有四個人。如果他想吃多一點蛋糕,老師就不准吃他的生日蛋糕,所以自己導出四分之一比五分之一來的大的數學概念。這個學生在分數大小的學習上,應該是有了因果式理解。
孔夫子有云:「學而時習之,不亦說乎」。能利用課餘來南大進修,偶爾複習到從前學習的教育相關概念,加上教授的適時指點,再與現在教室中實際教學遇到的狀況相結合,頗令人有「學以致用」的成就感。
2011年12月6日 星期二
書報討論(一)心得作業-5
◎授課教授:謝淡宜
◎上課日期:100年12月6日星期二
◎小組報告組別:第3組
◎論文題目: 國小三年級學童數學謎題與數學文字題解題之個案研究
◎心得撰寫:
本論文的個案研究是以國小三年級學學生為研究對象,藉由學生解題過程及結果,試著歸納並分析這些個案解題的歷程步驟,以釐清三年級學童在解「數學謎題」與「數學文字題」解題上的差異。
討論一開始,首先謝主任為大家破除對所謂「數學謎題」一詞的迷失認識。根據作者論文中所提及的「數學謎題」,例如商人帶著一隻狼、一隻羊和一袋白菜要安全渡河的問題;或是10枝鉛筆,一次只能拿1或2枝而要搶第10枝的問題等等,這種有挑戰性,且較具趣味性的問題,其實就是數學學習領域中的「非例行性問題」,謝主任認為研究者似乎不應該將這類問題自創一個新名詞來討論它,因為「數學謎題」並不是數學學習領域中的通用名詞,既然是一篇數學學術論文,應該要留意數學專業上的考量,而不要只是隨著坊間對這類題目的稱呼而跟著成為論文上主題的名詞寫法。
的確,我們在數學教科書中,對於以文字敘述的數學題目,我們小學老師習慣上以「應用題」稱呼之,但究其題目內容又不見得真的能夠「應用」來解決日常生活中真正遇到的問題,所以以「數學文字題」來稱呼,不但一眼即知意義,也較具標準化及專業性。而數學文字題是常見於教科書中,用來統整學生的語文能力及數學能力的綜合學習活動的數學練習題,所以我們稱之為「例行性問題」可當之無愧。反之「數學謎題」具遊戲性,而且不常出現日常生活中,但是也具有教育性值得大家探究,故當以「非例行性問題」稱呼之。
以上僅僅對論文題文的省思,我就有了一些對數學領域研究上名詞傳遞上想法。沒錯,做研究真的要非常嚴謹,從題目的訂定開始,雖然已經確定自己要研究的主題及方向,針對論文內容也的確用心寫作,但是如果題目本身的用語措辭讓人無法立即明白,或是大家對題目的解讀莫衷一是,那麼即使論文內容完善,仍稱不上是一篇好論文。
雖然我對題目本身有意見,但是卻對作者在文中對自己所提出的「研究限制」內容,覺得滿值得我將來寫作時的參考依據。對於此論文的研究限制她是這樣寫的:「本研究是採個案研究法,原本就無法做廣泛推論,故要參考文中方法時,需要注意學生的背景、先備知識再行應用。」本來嘛,真實說出自己研究的個案背景才是對論文負責的行為。自己如果真的要拿她的研究結果來應用在自己的教學職場上,就要了解研究者當初學生的時空背景,合適我用才拿來應用,這樣研究論文才顯出它的意義來。這樣寫法的確比起其他篇論文對於研究限制的敘述,總是說礙於個人能力限制的說法,我個人認為既實在又客觀,值得我將來寫論文時學習的參考。
這篇論文的研究個案學童背景,家長的社經地位頗高,看來家境應該都不錯,學童本身從小所得到的教育資源應當都很好,所以作者選擇他們進行個案研究。從這裡老師提醒我們一件很重要的議題,那就是如果將來我們也選擇個案研究作為研究時,個案取樣該如何進行?是分低中高分組呢?還是同質性高好呢?經過大家各自意見發表後,老師告訴我們答案,那就是要依研究題目而決定。以本篇而言由於研究重點在於探討學童解數學文字題目的「歷程」,而不是探求個案樣本之差異,應以「立意取樣」來取得研究對象,所以作者以刻意、有目的性的抽樣方式非隨機來選擇學童進行研究,我認為是正確的取樣方式。
本論文中提及國小學童的「閱讀理解」能力,是否會對解數學文字題的歷程產生影響?有文獻指出,依Mayer的解題歷程分析學生解題所遭遇的問題,發現學生在問題表徵階段中:語文知識的不足會嚴重影響數學學習;語意知識的不足則對題目的組織能力出現問題;而基模知識的不足,則是對數學問題缺乏基本的正確概念。以上均明確說明學童的「閱讀理解」能力是會影響學童解數學文字題的結果。
我在數學教學實務中,經常發現學生常用自己過去靠背誦得來的資訊去解決文字題,例如看到「共」就用加法,「相差」就用減法,根本還未去瞭解題意就將數字亂湊一通,很明顯沒有將題目的字句「轉譯」成自己的資訊,雖然一時可能矇對答案,但事實上這樣的學習是沒有意義的。本論文在這兒又點出我另一個在數學教學上要注意的議題—學生答對文字題是否真的是理解題意?還是只是靠所謂關鍵字來猜測?我想,有機會我應當試一試改變文字題的文字佈題敘述方式,避開關鍵字來考驗學生是否真理解題意。
最後在比較了作者對個案在「數學謎題」與「數學文字題」的解題歷程差異之後,發現「數學謎題」這種非例行性問題,數學程度較高的學生可以依轉譯成自己語言,然後整合問題,嚐試不同方法最後解出問題,只要一般語文程度不差者,將不會對「數學謎題」產生題意瞭解之困擾。意即對數學文字題解題歷程出問題者,都是對數學基本觀念不熟或有誤所致。相信只要掌握數學正確的基本概念,不管「數學謎題」也好,「數學文字題」也好,學童在瞭解題意之後,經過轉譯問題,依自己方法整合問題,有計畫地執行解題步驟,最後一定能夠解題的。
2011年12月1日 星期四
Ghost 舊版只支援2G以下記憶體
服役多年的網管機,前些日子開始作怪,不是叫不起床,就是每件事要"想"很久。
想想裡頭"腦容量"年事已高,差不多要退休了,所以今天準備動手給他Ghost一下,
誰知怎麼開就是進不了Ghost,Google之後。試著拔掉2G,剩2G之後就真的可以Ghost了。
想想裡頭"腦容量"年事已高,差不多要退休了,所以今天準備動手給他Ghost一下,
誰知怎麼開就是進不了Ghost,Google之後。試著拔掉2G,剩2G之後就真的可以Ghost了。
2011年11月29日 星期二
數學課程理論研究心得作業-5
◎授課教授:謝淡宜 教授
◎上課日期:100年11月29日星期二
◎上課重點摘要:
1.真正理解的學習
2.慣性學習與智慧學習
3.甲類智慧與乙類智慧
◎心得寫作:
屈指一算從小學、國中、高中唸到大學畢業,總共在學校學習各種知識少說也有十六年。一天以上課6小時計算,一學年約二百天,16年下來至少有一萬多個小時我們是坐在教室內聽課的。這中間若是每一分每一秒都能認真聽講,回家也按照教師吩咐完成每一件功課。按照道理來說,這麼長的時數,應該可以培養出具有高度智慧涵養的學生了。可是,真的有多少時數就有多少智慧嗎?今天這堂課,給了我部份的解答。
是的,今天學的是「真正理解的學習」。套句現在流行的一句電視節目台詞:「老師在講你都沒有在聽」(某仿股市節目主持人郭子乾的口頭禪)。喔!老師在講,其實你有在聽,搞不好還很認真聽,只是沒有理解而已。如同我們教師常在教室暗地裡嘲笑學生左耳進右耳出的道理一樣,學生光是聽,沒經過有智慧的學習,往往唸過就算、讀過就忘。
教學多年我發現教室裡大部分的學生是懶得思考的,少有願意多動腦筋想一想老師話語的學生,即使有,他也不見得願意和老師互動。長久下來使得課堂中的老師一個人唱獨腳戲,偶有熱烈反應也只是粗淺的問答互動而已。
根據Skemp的分類,將學習在性質上分為慣性學習(反覆記憶式的學習)及智慧的學習(理解式的學習)。當然,所有老師都會希望自己在課堂上進行的是智慧的學習活動。幸運的是,數學學習剛好最容易進行這樣的活動,所以我得好好再三研讀老師這段關於真正理解學習的文章。
人的腦袋真的是很奇妙,同一個刺激,不同人就是能產生不同的連結,而導致各種結果行為出現。如果行為合乎甚至超乎我們期待,我們自然就認為這個學生的智慧高。反之就說他沒有智慧。提到智慧,Hebb說明智慧有兩個含意,一個為Intelligent A,老師譯成甲類智慧,另一個應該是Intelligent B吧!(文章中沒看到,只有老師說的乙類智慧)。前者著重於天賦的潛能,例如音樂家、運動家及頂尖的科學家,就是甲類智慧較發達的人物。後者則著重腦筋持續發展之後的反應作用,也就是遇外界刺激之後,會與環境交互作用進而做出適當的反應。這樣看來,數學學習真的是一種提供乙類智慧發展最佳的心智工具。
總而言之,要開發腦袋裡的智慧,來進行真正理解的學習,這樣的學習效果才是長久有用的。不然,雖然努力上課學習,到頭來還是被人笑稱:「老師在講你都沒有在聽」,那豈不冤枉!
2011年11月24日 星期四
記住!靜下心來從頭想一想
差不多一個星期,都在找DHCP的問題
換主機重灌,有線抓得到,無線卻抓不到,
又換一台架DHCP,變成無線抓得到IP,有線沒有了,
前天改B2D,昨天換ubutu,今天再架OB2D,
天啊!沒完沒了。
就在剛剛,就在放學前,
終於解決DHCP問題了
但是我不敢講怎麼解決的
有時候
人生就是這麼一回事
解決方法很顯而易見
超級簡單
可是
想太多
反而最簡單的方法卻沒去試
心中一直遷就一個小小未明的根本問題
於是
大費周章仍無法解決難題
我在想
如果問題發生時
我能夠靜下心來思考根本的所在
應該不會浪費這麼多時間在這上頭
不過
不經一事 不長一智
算是這星期忙網路問題的收獲吧
還是要勇敢說出我怎麼解決IP抓不到的問題
.....
..........
...............
...................把DHCP的動態IP範圍取大一些就好
哇哩嘞
2011年11月22日 星期二
書報討論(一)心得作業-4
◎授課教授:謝淡宜
◎上課日期:100年11月22日星期二
◎小組報告組別:第1組
◎論文題目:國小四年級學童在合作學習下解數學謎題之相關研究
◎心得撰寫:
老實說,在小學教育職場上從事數學教學這麼多年,還是第一次認真看待對「非例行性問題」的定義解釋。雖然在此論文中名詞解釋的部分中有介紹,但是有看沒懂。經過老師指點,才知道「非例行性問題」原來指的是非傳統教科書或坊間其他各版本教科書中的數學文字題目。這類題目通常不會出現在教科書中,而是會在日常生活中產生較有趣味,或是較具挑戰性的數學問題,有些人也稱這些題目為「數學謎題」。
這篇研究是想探討國小四年級學生在合作學習的學習環境中,對於解非例行性數學問題時的解題表現,並且進一步瞭解對不同程度學生,在合作學習中是否有幫助其解題能力。雖然作者在文中明白表示其研究結果只是說明他們學校四年級學生之現象,不宜推論於其他地區、其他學校及其他年級之學童。但是經由我們詳讀此論文,加上大家利用下課時間交換彼此心得,我認為這篇研究指出若四年級學生可以經由合作學習增加學習的能力,那麼其實也可以推廣應用到其他年級的。
作者在本篇論文中想要研究的問題有四個:探討合作學習前後學生對數學謎題的閱讀理解表現?其解題能力表現?還有低、中、高程度學生的解題能力提昇的情形為何?最後是解數學謎題的類型為何?在這四個問題中,最後一個關於解題類型可以依收集內容,經過整理歸納的方法明確列出研究結果來。倒是第一至三的研究問題,關於「能力表現」及「能力提昇情形」,我很好奇其結果在數學上該如何呈現?如何用數字去評量閱讀理解能力?後來才知道作者用問卷方式和依解題歷程給予得分來進行資料統計分析,最後分成量化分析統計結果及質化的描述結果。
在討論的初期,老師拋了一個問題給大家:為什麼作者要找非例行性問題當主題來進行研究?原本我以為應該是這類問題比較有趣又具遊戲性,可以引發學童的學習動機來學習數學。後來經老師指正,才瞭解這個問題與九年一貫的教育目標有關--就是要學生具有「帶著走」的能力。簡單言之,數學家認為學生真正的數學能力,在於能夠解決「非例行性的問題」。因為若是拿教科書內的例行性問題來考驗學生,有可能學生在家或在其他場所(如補習班、安親班),早就接觸過或被教導過,以致無法測驗出學生真正的數學解題能力。唯有不常見的非例行性問題,才能看出學童是否具備數學基本正確概念,是否有計畫有步驟地解題?所以為了探求學童的數學能力,研究者才會把數學謎題當主題來進行探究吧!
因為這篇研究,我才知道原來Polya是數學解題歷程研究這方面的大師。他認為大致可分成四階段:瞭解問題—擬定計畫—實行計畫—回顧解答。其他各家學者大概也按這些歷程來分析,只不過把階段更細分而已。其實我也同意老師的見解:解決一個數學題目,在當下哪有可能分成那麼複雜的歷程,還是以Polya的四個歷程容易理解,易於進行分析解讀。
經由教師的努力,想要提昇學童的數學解題能力,我相信是有可能的。至於提昇多少能力,那就因人(學童)而異了。不要說是四年級,其他各年級都一樣,高程度的學生因為是在高分組,所以縱然有進步,成績提昇有限。而低分組的學生,則是恐怕連最基本的數學概念都無法理解,所以雖然解題能力有提昇,但相信仍停留在低分組階段。而反觀中分組的學生,這些學生有可能其數學觀念正處於似懂非懂的狀況下,以致成績不高不低,此時若加以適當引導,適時釐清正確觀念,則這些學生的數學解題能力有可能超越高分組學生。所以說,要提昇學童的解題能力,我相信中分組的學生最有潛力進步最多。
又本文是藉學童的合作學習情境來解題,所以授課教師的帶領又是另外一個值得探究的議題。不管是小組的安排、題目的設計、情境的引導,這些因素我相信都會深深影響研究結果。可惜作者在文中並沒有特別提及他是如何帶領學生進入合作學習的情境中,也許作者認為這不是論文重點,所以忽略這部分吧!不過,有機會我倒想進一步討教他呢!
2011年11月19日 星期六
PDF to Word online
雖然並不怎樣喜歡用Word
但是很現實地
學校作業都得用它
線上將PDF轉成Word
but,實際使用結果,
發現對中文檔名超級不支援
輸出結果時好時壞,但好歹可以一試。(rtf格式)
訂閱:
文章 (Atom)